
Prof V.V.Subrahmanyam

Director, SOCIS

Date: 9th May, 2020 Time : 12 Noon

1

 It is necessary to keep data in the permanent storage
because it is difficult to handle the large volume of
data by programs and after execution of program is
over all the entered data will be lost because, the data
stored in the variables are temporary.

 C supports the concept of file through which the data
can be stored in the disk or secondary storage device.

2

 A file is a collection of data or text placed on the disk.
 A sequential stream of bytes ending with an end-of-file marker

is what is called a file.
 When the file is opened the stream is associated with the file.
 By default, three files and their streams are automatically

opened when program execution begins –
 The standard input
 The standard output
 The standard error.

 Streams provide communication channels between files and
programs.

3

 C supports two kinds of files in which data can be
stored in 2 ways either in characters coded in their
ASCII character set or in binary format. They are

 Text Files

 Binary Files

4

 In text files, everything is stored in terms of text

 i.e. even if we store an integer 54; it will be stored as a 3-
byte string - “54\0”.

 In a text file certain character translations may occur.
For example a newline(\n) character may be converted
to a carriage return, linefeed pair. This is what Turbo C
does. Therefore, there may not be one to one
relationship between the characters that are read or
written and those in the external device.

 A binary file contains data that was written in the same
format used to store internally in main memory.

5

 When working with files, you need to declare a
pointer of type file. This declaration is needed for
communication between the file and the program.

Syntax: FILE *fptr;

6

 Creation of a new file (fopen)

 Opening an existing file (fopen)

 Reading from file (fscanf or fgets)

 Writing to a file (fprintf or fputs)

 Moving to a specific location in a file
(fseek, rewind)

 Closing a file (fclose)

7

 Opening a file is performed using the fopen() function
defined in the stdio.h header file.

The syntax for opening a file in standard I/O is:

ptr = fopen("fileopen","mode");

Example:

fopen(“D:\\cprogram\\newprogram.txt","w");

8

 “r” – Searches file. If the file is opened successfully fopen()
loads it into memory and sets up a pointer which points to
the first character in it. If the file cannot be opened fopen()
returns NULL.

 “w” – Searches file. If the file exists, its contents are
overwritten. If the file doesn’t exist, a new file is created.
Returns NULL, if unable to open file.

 “a” – Searches file. If the file is opened successfully fopen()
loads it into memory and sets up a pointer that points to the
last character in it. If the file doesn’t exist, a new file is
created. Returns NULL, if unable to open file.

9

 “r+” – Searches file. If is opened successfully fopen()
loads it into memory and sets up a pointer which
points to the first character in it. Returns NULL, if
unable to open the file.

 “w+” – Searches file. If the file exists, its contents are
overwritten. If the file doesn’t exist a new file is
created. Returns NULL, if unable to open file.

 “a+” – Searches file. If the file is opened successfully
fopen() loads it into memory and sets up a pointer
which points to the last character in it. If the file
doesn’t exist, a new file is created. Returns NULL, if
unable to open file.

10

 A binary file is a file that uses all 8 bits of a byte for storing the information .It
is the form which can be interpreted and understood by the computer.

1.wb(write)

this opens a binary file in write mode.
SYNTAX:
fp=fopen(“data.dat”,”wb”);

2.rb(read)

this opens a binary file in read mode
SYNTAX:
fp=fopen(“data.dat”,”rb”);

11

3.ab(append)

this opens a binary file in a Append mode i.e. data can be
added at the end of file.
SYNTAX:
fp=fopen(“data.dat”,”ab”);

4.r+b(read+write)

this mode opens preexisting File in read and write mode.
SYNTAX:
fp=fopen(“data.dat”,”r+b”);

5.w+b(write+read)
12

FILE *fptr;

fptr = fopen(“abc.txt”, “w”);

13

 The file (both text and binary) should be closed after
reading/writing.

 Closing a file is performed using the fclose() function.

fclose(fptr);

Here, fptr is a file pointer associated with the file to be
closed.

14

 This function flushes any unwritten data for stream,
discards any unread buffered input, frees any
automatically allocated buffer, and then closes the
stream.

 The return value is 0 if the file is closed successfully or
a constant EOF, an end-of file marker, if an error
occurred.

15

include <stdio.h>

main ()

{

FILE *fp;

if ((fp=fopen(“file1.dat”, “r”))==NULL)

{

printf(“FILE DOES NOT EXIST\n”);

exit(0);

}

else {

……………..

…………….. }

/* close the file */

fclose(fp);

}

16

 Character input/output functions

 String input/output functions

 Formatted input/output functions

 Block input/output functions.

17

 getc()
 putc()

getc() is used to read a character from a file and
putc() is used to write a character to a file.
Their syntax is as follows:

int putc(int ch, FILE *stream);
int getc(FILE *stream);

18

/*Program to copy one file to another */

#include <stdio.h>

main()

{

FILE *fp1, *fp2;

int ch;

if((fp1=fopen(“f1.dat”,”r”)) == NULL)

{

printf(“Error opening input file\n”);

exit(0); }

if((fp2=fopen(“f2.dat”,”w”)) == NULL)

{

printf(“Error opening output file\n”);

exit(0);

}

19

while (! eof(fp1))

{

ch=getc(fp1);

putc(ch,fp2);

}

fclose(fp1);

fclose(fp2);

}

 If we want to read a whole line in the file then each
time we will need to call character input function,
instead C provides some string input/output functions
with the help of which we can read/write a set of
characters at one time.

 fgets()

 fputs()

20

These functions are used to read and write strings. Their
syntax is:

int fputs(char *str, FILE *stream);

char *fgets(char *str, int num, FILE *stream);

21

/*Program to read a file and count the
number of lines in the file */

#include<stdio.h>

#include<conio.h>

#include<process.h>

void main()

{

FILE *fp;

int cnt=0;

char str[80];

/* open a file in read mode */

if ((fp=fopen("lines.dat","r"))==NULL)

{ printf("File does not exist\n");

exit(0);

}

22

/* read the file till end of file is encountered
*/

while(!(feof(fp)))

{ fgets(str,80,fp); /*reads at most 80

characters in str */

cnt++; /* increment the

counter after reading

a line */

}

}/* print the number of lines */

printf(“The number of lines in the file is
:%d\n”,cnt);

fclose(fp);

}

 If the file contains data in the form of digits, real
numbers, characters and strings, then character
/string I/O functions are not enough as the values
would be read in the form of characters.

 Hence C provides a set of formatted input/output
functions.
 fprintf()

 fscanf()

23

 The syntax for these functions is:

int fscanf(FILE *fp, char *format,. . .);

int fprintf(FILE *fp, char *format,. . .);

Both these functions return an integer indicating the
number of bytes actually read or written.

24

#include<stdio.h>

main()

{

int account;

char name[30];

double bal;

FILE *fp;

if((fp=fopen("bank.dat","r"))== NULL)

printf("FILE not present \n");

else

do{

fscanf(fp,"%d%s%lf",&account,name,&bal);

if(!feof(fp)) {

if(bal==0)

printf("%d %s %lf\n",account,name,bal);

}

}while(!feof(fp));

}

25

 This program opens a file “bank.dat” in
the read mode if it exists, reads the records
and prints the information (account
number, name and balance) of the zero
balance records.

 Block Input / Output functions read/write a block
(specific number of bytes from/to a file.

 A block can be a record, a set of records or an array.

 These functions are also defined in standard library
and are described below.

 fread()
 fwrite()

26

int fread(void *buf, int num_bytes, int count, FILE *fp);

int fwrite(void *buf, int num_bytes, int count, FILE *fp);

27

 In case of fread(), buf is the pointer to a memory area
that receives the data from the file

 In fwrite(), it is the pointer to the information to be
written to the file.

 num_bytes specifies the number of bytes to be read or
written.

 These functions are quite helpful in case of binary
files. Generally these functions are used to read or
write array of records from or to a file.

28

 We can also differentiate in terms of the type of file
access as
 Sequential access files

 Random access files.

 Sequential access files allow reading the data from the
file in sequential manner which means that data can
only be read in sequence.

29

 The function fseek() is used to set the file position.

int fseek(FILE *fp, long offset, int pos);

 The first argument is the pointer to a file.
 The second argument is the number of bytes to move the

file pointer, counting from zero. (can be positive or
negative depeding on the desired movement).

 The third parameter is a flag indicating from where in the
file to compute the offset. It can have three values (0,1,2).

30

 SEEK_SET(or value 0) the beginning of the file

 SEEK_CUR(or value 1) the current position

 SEEK_END(or value 2) the end of the file

31

